Factors of 3: Negative Factors, Sum, Factor Pairs and more

Factors of 3 are useful in diverse areas of mathematics, from simplifying expressions to solving equations and understanding divisibility rules. In the case of 3, finding its factors helps with tasks like comprehending multiples of 3 or working with fractions with a denominator of 3. Read on to learn more about the Factors of 3, their Sum, the Negative Factors, Factor Pairs and 3 Unique Points about the Factors of 3.

What are the Factors of 3?

To put it into perspective, Factors are the numbers that divide evenly into another number. When it comes to 3, the factors are the numbers that you can divide it by without any remainder.

So, what are the factors of 3? There are only two and they are 1 and 3.

In addition, the reasoning behind it is that:

3 ÷ 1 = 3 (with no remainder)

3 ÷ 3 = 1 (with no remainder)

Moreover, any other number you try to divide 3 by will leave a remainder, hence disqualifying it from being a factor.

Also Read: 7 Types of Fractions with Examples

What is the Sum of the Factors of 3?

Now, as you know that the Factors of 3 are 1 and 3, finding their sum is clear. Simply add 1 and 3:

1 + 3 = 4.

Therefore, the Sum of the Factors of 3 is 4.

What are the Negative factors of 3?

While we generally focus on positive factors, it is important to remember that multiplication works both ways. Therefore, Negative numbers can also be factors as long as the product is positive.

In the case of 3, the Negative factors are -1 and -3.

Moreover, Multiplying -1 by -3 results in a positive 3, thus making them both valid factors.

Also Read: Factors of 17: Factor Pairs, Factor Tree

What are the Factor Pairs of 3?

Factor Pairs are two factors of a number that, when multiplied together, give you the original number. For 3, these are the Factor Pairs:

• (1, 3)
• (3, 1)
• (-1, -3)
• (-3, -1)

3 Unique Points about the Factors of 3

Furthermore, the 3 Unique Points about the Factors of 3 are as follows:

• 3 has only two factors (1 and 3), hence making it a Prime number.
• Even though 1 is a factor it is not a Prime factor of 3 as Prime factors only have 1 and itself as factors.
• Factors of 3 which are 1, 3, -1, -3 help identify multiples of 3 (numbers divisible by 3).

Related Blogs

I hope this helps! Did you like learning about the Factors of 3? You also learn about the Factors of 1 to 25! Also, keep reading our blogs to learn more about the Basic Concepts of Maths!