Maths Practical Class 10 The syllabus for maths practical class 10 is designed in a way that students will be enriched with the core understanding of the concepts they are studying at this level. Throughout the academic year, class 10 students will be studying the following activities based on important concepts- | Activity | Objective | |------------|--| | Activity 1 | To obtain the HCF of two numbers experimentally using the Euclid's Division Lemma | | Activity 2 | To draw a graph of a quadratic polynomial equation and examine that: -The shape of the curve when the coefficient of X2 is negative -The shape of the curve when the coefficient of X2 is positive -Number of zeroes | | Activity 3 | Through the graphical method checking the condition of consistency or inconsistency in a pair of linear equation having two variables. | | Activity 4 | By completing the square geometrically, calculating the solution of a general quadratic equation. | | Activity 5 | From a given list of numbers or patterns, identifying the Arithmetic Progression. | | Activity 6 | Calculate the sum of first n natural numbers. | | Activity 7 | To obtain the sum of first n odd natural numbers. | | Activity 8 | Find out the sum of first n even natural numbers. | |----------------|---| | Activity 9 | For an arithmetic progression having n terms, establishing a formula for calculating its sum. | | Activity
10 | Verification of the distance formula by the graphical representation method. | | Activity
11 | by the graphical method for finding the area of a triangle and verifying its formula. | | Activity
12 | to examine the criteria of similarity between two triangles. | | Activity
13 | Using two intersecting strips with nails drawing a system of similar squares. | | Activity
14 | Using Y-shaped stripes which nails to draw a system of similar triangles. | | Activity
15 | To verify the Thales theorem, that is, the basic proportionality theorem. | | Activity
16 | Finding the actual relationship between sides and areas of similar triangles. | | Activity
17 | To determine that the ratio of the square of the corresponding side of two similar triangles is equal to the ratio of areas of those two triangles. | | Activity
18 | To draft a quadrilateral equivalent to a given quadrilateral according to the given scale. | | | | | Activity
19 | Stating and verifying Pythagoras theorem. | |----------------|--| | Activity
20 | Using the Bhaskara method, verifying the Pythagoras theorem. | | Activity
21 | To experimentally state that any tangent at a particular point to the circle is always perpendicular to the radius through that point. | | Activity
22 | By selecting a point, finding the total number of tangents possible to a circle. | | Activity
23 | From the same external point, the length of tangents to a circle are always equal. | | Activity
24 | to experimentally find the height of a building using a clinometer. | | Activity
25 | To practically design a frustum of a cone. | | Activity
26 | Through the experiment, finding out the formula for surface area and the volume of the frustum of a cone. | | Activity
27 | To create a graph of cumulative frequency curve or ogive of less than type. | | Activity
28 | To create a graph of cumulative frequency curve or ogive of more than type. | | Activity
29 | To calculate the experimental probability of throwing a die, that is, 1,2, 3, 4, 5 or 6 500 times and comparing it with the theoretical probabilities given. | Activity 30 By tossing a coin 1000 times, calculating the experimental property of heads or tails and further comparing it with theoretical problems.